SIRIUS Logo
  • 1. Sirius at a glance
  • 2. Sirius Theoretical Basis
    • 2.1. Upsampling
      • 2.1.1. "Fourier Zero Padding"
      • 2.1.2. Tile processing of the large image
      • 2.1.3. The discontinuous signals
      • 2.1.4. User kernel interpolator
      • 2.1.5. Convolution near the data edges
      • 2.1.6. Float upsampling factor
    • 2.2. Downsampling
    • 2.3. References
    • 2.4. Associated Python Code
  • 3. Sirius Developer Zone
SIRIUS
  • Docs »
  • 2. Theoretical Basis »
  • 2.1. Upsampling
  • View page source

2.1. Upsampling¶

  • 2.1.1. "Fourier Zero Padding"
    • 2.1.1.1. Sinus cardinal interpolation
    • 2.1.1.2. Simple example
    • 2.1.1.3. Summary
  • 2.1.2. Tile processing of the large image
    • 2.1.2.1. The implicit edges discontinuities and their associated artifacts
    • 2.1.2.2. The possible solutions
      • 2.1.2.2.1. Margin the original data
      • 2.1.2.2.2. Mirroring the original data
      • 2.1.2.2.3. The periodic + smooth decomposition
    • 2.1.2.3. Conclusion : Sirius uses the p+s decomposition
  • 2.1.3. The discontinuous signals
    • 2.1.3.1. Illustrating the issue
    • 2.1.3.2. The windowing solution
  • 2.1.4. User kernel interpolator
    • 2.1.4.1. One can give Sirius his own low-pass filter
    • 2.1.4.2. The Sirius Filter must lie on the spatial domain
    • 2.1.4.3. The Sirius Filter must be sampled like the upsampled (targeted) signal
    • 2.1.4.4. The Sirius Filter is odd and a GDAL supported image format
    • 2.1.4.5. Sirius auto-shifts the Filter before its FT is computed
    • 2.1.4.6. Sirius can normalize the Filter
    • 2.1.4.7. When Sirius uses a Filter to upsample, the spectrum is periodized instead of zero padded
  • 2.1.5. Convolution near the data edges
    • 2.1.5.1. The real edges
    • 2.1.5.2. The virtual edges
    • 2.1.5.3. What Sirius proposes
  • 2.1.6. Float upsampling factor
Next Previous

© Copyright 2018, CS.

Built with Sphinx using a theme provided by Read the Docs.